Skip to main content

KnowledgeBase

Power loss

videoplayer.png

Power losses and efficiency calculation in the FVA-Workbench

Equation 1.
PV=(PVZP+PVZ0)+(PVLP+PVL0)+PVPB+PVD+PVST+PVXP_V=\left(P_{VZP}+P_{VZ0}\right)+\left(P_{VLP}+P_{VL0}\right)+P_{VPB}+P_{VD}+P_{VST}+P_{VX}


Symbol

Description

Unit

PV

Total power loss

W

PVZP

Load-dependent gear losses

W

PVZ0

Load-independent gear losses

W

PVLP

Load-dependent rolling bearing losses

W

PVL0

Load-independent rolling bearing losses

W

PVPB

Plain bearing losses

W

PVD

Sealing losses

W

PVST

Rim or planet carrier losses

W

PVX

Other losses

W

Power losses caused by tooth and bearing friction can be divided into load-dependent (index 0) and load-independent (index P) power losses.

Seals, bearings, and gears have a negative effect on the overall efficiency due to rolling and sliding friction, even without load.

The following table lists the different calculation approaches for various components, including the corresponding methods/sources.

Type of loss

Components

Method/source

PVZP

Cylindrical gears

Hv according to OHLENDORF, TALBOOM, WIMMER

µmZ according to SCHLENK, DOLESCHEL

PVZP

Bevel and hypoid gears

HV and µmZ according to WECH

PVZP

Worm stages

DIN 3996, FVA 729 I

PVZ0

Cylindrical gears, bevel and hypoid gears

Splash lubrication:

Squeeze and splash losses according to MAUZ, WALTER

Injection lubrication:

Squeeze losses according to MAUZ, BUTSCH

Pulse losses according to ARIURA, BUTSCH

Ventilation losses according to MAURER

PVLP,PVL0

Rolling bearings

SKF, SCHAEFFLER, TIMKEN, ISO14179-2

PVPB

Plain bearings

COMBROS R&A

PVD

Seals

ISO 14179-1, ISO 14179-2, LINKE

PVST

Planet carriers

KETTLER

Table: Power loss calculations, methods, sources

The losses are considered in the system calculation. Torque losses are subtracted from the transferred torque at the position in the power flow at which they occur. The speed remains unaffected; the losses do not have a braking or slowing effect on the overall system.

The efficiency of the gearbox is calculated from the ratio of useable power to applied power.

Equation 2.
η=PAn-PVPAn100\eta=\frac{P_{An}-P_V}{P_{An}}\cdot100


Symbol

Description

Unit

η

Efficiency

%

PAn

Input power

W

PV

Total power loss

W

Gear losses

The power loss of the gears is calculated from the load-dependent and load-independent loss components. The calculation differentiates between cylindrical gears, bevel and hypoid gears, and worm gears.

Load-dependent gear losses for cylindrical gears

The load-dependent gear losses are determined using the following basic equation, based on Coulomb friction.

Equation 3.
PVZP=HVμmZPAn P_{VZP}=H_V\cdot\mu_{mZ}\cdot P_{An}


Symbol

Description

Unit

PVZP

Load-dependent gear losses

W

HV

Tooth loss factor

-

µmZ

Average gear friction coefficient

-

PAn

Input power

W

There are different methods for calculating the tooth loss factor and average gear friction coefficient. These are described in more detail below.

The tooth loss factor according to OHLENDORF is very often used to evaluate the efficiency of the geometric design of a gear. The method shown here corresponds to the generally accepted extension according to Wimmer.

Equation 4.
HV=π(u+1)z1ucosβb(a0+a1|ϵ1|+a2|ϵ2|+a3|ϵ1|ϵ1+a4|ϵ2|ϵ2) H_V=\frac{\pi\cdot\left(u+1\right)}{z_1\cdot u\cdot\cos\beta_b}\cdot\left(a_0+a_1|\epsilon_1|+a_2|\epsilon_2|+a_3|\epsilon_1|\epsilon_1+a_4|\epsilon_2|\epsilon_2\right)


Symbol

Description

Unit

HV

Tooth loss factor

-

u

Gear ratio (z2/z1)

-

z1/2

Number of teeth of pinion/wheel

-

βb

Base circle helix angle

deg

ε1/2

Tip contact ratio of pinion/wheel

-

a0…4

Coefficients for tooth loss factor

-

With coefficients for the tooth loss factor from:

Transverse contact ratio

Location of the pitch point C

a 0

a 1

a 2

a 3

a 4

0 ≤ εα ≤ 1

before the engagement area

0

0

0

1/εα

1/εα

in the engagement area

0

0

0

1/εα

1/εα

after the engagement area

0

0

0

1/εα

1/εα

1 < εα ≤ 2

before the engagement area

0

1

1

0

0

in the first double engagement area

0

1

-1

0

1

in the engagement area

1

-1

-1

1

1

in the second double engagement area

0

-1

1

1

0

after the engagement area

0

1

1

0

0

2 < εα ≤3

before the engagement area

0

1

1

0

0

in the first triple engagement area

0

1

-1

0

2/3

in the first double engagement area

4/3

-1/3

-1

1/3

2/3

in the second triple engagement area

1

-1/3

-1/3

1/3

1/3

in the second double engagement area

4/3

-1

-1/3

2/3

1/3

in the third triple engagement area

0

-1

1

2/3

0

after the engagement area

0

1

1

0

0

The TALBOOM method is a ZF company standard.

Equation 5.
HV=π(1z1+1z2)cosβb0.9ϵ12+1.1ϵ22-(0.9ϵ1+1.1ϵ2)(ϵα-1)+23(ϵα-1)2 H_V=\frac{\pi\cdot\left(\frac{1}{z_1}+\frac{1}{z_2}\right)}{\cos\beta_b}\cdot0.9\cdot\epsilon_1^2+1.1\cdot\epsilon_2^2-\left(0.9\cdot\epsilon_1+1.1\cdot\epsilon_2\right)\cdot\left(\epsilon_{\alpha}-1\right)+\frac{2}{3}\cdot\left(\epsilon_{\alpha}-1\right)^2


This formula is applicable when the first gear is the driving gear; otherwise, the tip contact ratios in the formula are changed to the other gear, accordingly.

Symbol

Description

Unit

HV

Tooth loss factor

-

z1/2

Number of teeth of pinion/wheel

-

βb

Base circle helix angle

deg

ε1/2

Tip contact ratio of pinion/wheel

-

εα

Transverse contact ratio

-

The local-geometric tooth loss factor according to WIMMER considers the actual load distribution, including gear modifications. Efficiency is improved when the load is shifted in the direction of the pitch point in tooth contact. As a result, this method can be used for efficiency-oriented gear design.

In the Ohlendorf calculation, the tooth contact is only considered on the path of contact, and a simplified formula is derived based on assumptions. The basic equation is:

Equation 6.
HV=1petx=AEFN(x)vg(x)dx H_V=\frac{1}{p_{et}}\cdot\int_{x=A}^EF_N\left(x\right)\cdot v_g\left(x\right)dx


The Wimmer calculation also considers the contact width, and the tooth loss factor is calculated using numerical methods without simplifications. The starting point is the following equation:

Equation 7.
HV=1pety=0bx=AEFN(x,y)Fbtvg(x,y)vtbdxdy H_V=\frac{1}{p_{et}}\cdot\int_{y=0}^b\int_{x=A}^E\frac{F_N\left(x,y\right)}{F_{bt}}\cdot\frac{v_g\left(x,y\right)}{v_{tb}}dxdy


Symbol

Description

Unit

HV

Tooth loss factor

-

pet

Base pitch at base circle

mm

x

Coordinates on the path of contact: distance from the pitch point

mm

A,E

Coordinates on the path of contact:  beginning and end of the path of contact

mm

FN

Normal force of the tooth

N

vg

Sliding speed

m/s

y

Coordinate on the path of contact

mm

b

Face width of the contact

mm

Fbt

Peripheral force at pitch circle

N

vtb

Circumferential speed at base circle

m/s

The SCHLENK method is most commonly used for calculating the average gear friction coefficient. Only a few input variables are required.

Equation 8.
μmZ=0.048(Fbt/bvΣCρredC)0.2ηOil-0.05Ra0.25XL \mu_{mZ}=0.048\cdot\left(\frac{F_{bt}/b}{v_{\Sigma C}\cdot\rho_{redC}}\right)^{0.2}\cdot\eta_{Oil}^{-0.05}\cdot Ra^{0.25}\cdot X_L


Symbol

Description

Unit

µmZ

Average tooth friction coefficient

-

Fbt

Peripheral force at pitch circle

N

vΣC

Sum of speeds at pitch point

m/s

ρredC

Equivalent radius of curvature at pitch point

mm

ηOil

Dynamic operating oil viscosity

mPas

XL

Lubricant factor

-

Ra

Arithmetic mean roughness value of the gear partners 0.5 · (Ra1 + Ra2)

µm

b

Face width

mm

The DOLESCHEL method is more accurate than the simple SCHLENK method for determining the average gear friction coefficient. However, it requires specific test rig reference measurements that are often not available in practice.

Equation 9.
μmZ=(1-ξ)μF+ξμEHD \mu_{mZ}=\left(1-\xi\right)\cdot\mu_F+\xi\cdot\mu_{EHD}


with

Equation 10.
ξ[0;1] \xi\in\left[0;1\right]


and

Equation 11.
μEHD=μEHD,ref(pHpH,ref)αEHD(vΣvΣ,ref)βΣ,EHD(ηOilηOil,ref)γEHD \mu_{EHD}=\mu_{EHD,ref}\cdot\left(\frac{p_H}{p_{H,ref}}\right)^{\alpha_{EHD}}\cdot\left(\frac{v_{\Sigma}}{v_{\Sigma,ref}}\right)^{\beta_{\Sigma,EHD}}\cdot\left(\frac{\eta_{Oil}}{\eta_{Oil,ref}}\right)^{\gamma_{EHD}}


Equation 12.
μF=μF,ref(pHpH,ref)αF(vΣvΣ,ref)βΣ,F \mu_F=\mu_{F,ref}\cdot\left(\frac{p_H}{p_{H,ref}}\right)^{\alpha_F}\cdot\left(\frac{v_{\Sigma}}{v_{\Sigma,ref}}\right)^{\beta_{\Sigma,F}}


with

Equation 13.
ξ=1-(1-(0.5h0Ra))2 \xi=1-\left(1-\left(0.5\cdot\frac{h_0}{Ra}\right)\right)^2


if

Equation 14.
h02Ra h_0\le2\cdot Ra


or

Equation 15.
ξ=1 \xi=1


where

Equation 16.
h0>2Ra h_0>2\cdot Ra


Symbol

Description

Unit

µmZ

Average tooth friction coefficient

-

ξ

Amount of EHD friction for mixed friction

-

µF,ref

Solid friction coefficient (under reference conditions)

-

µEHD,ref

EHD friction coefficient (under reference conditions)

-

pH,ref

Hertzian contact stress (under reference conditions)

MPa

vΣ,ref

Sum of speeds (under reference conditions)

m/s

ηOil,ref

Dynamic operating oil viscosity (under reference conditions)

mPas

αEHD/F

Exponent for pressure influence

-

βΣ,EHD/F

Exponent for sum of speeds influence

-

γEHD

Exponent for viscosity influence

-

h0

Minimum lubricating film thickness

µm

Ra

Arithmetic mean roughness value of the gear partners 0.5 · (Ra1 + Ra2)

µm

These 11 test rig reference measurements must be specified for the lubricant in the database.

Load-dependent gear losses for bevel/hypoid gears

The load-dependent gear losses of bevel and hypoid gears are managed similar to cylindrical gears. The WECH calculation method is used. This method approximates bevel and hypoid gears as virtual crossed helical gears according to Niemann/Winter.

The gear losses are calculated from the average friction coefficient, the tooth loss factor, and the input power:

Equation 17.
PVZP=μmZHVPAn P_{VZP}=\mu_{mZ}\cdot H_V\cdot P_{An}


Symbol

Description

Unit

PVZP

Load-dependent gear losses

W

µmZ

Average gear friction coefficient

-

HV

Tooth loss factor

-

PAn

Input power

W

The following factors have an influence on the average friction coefficient µmZ:

  • The load, average total sliding speed, and the average sum of speeds of the virtual crossed helical gear and the equivalent radius of curvature at the pitch point are considered via the load and geometry factor QH.

  • The lubricant characteristics VL, type of lubrication VS, operating oil viscosity VZ, and roughness of the tooth flanks VR are included as factors.

Equation 18.
μmZ=0.054VRVSVZVLQH \mu_{mZ}=0.054\cdot V_R\cdot V_S\cdot V_Z\cdot V_L\cdot Q_H


Symbol

Description

Unit

µmZ

Average gear friction coefficient

-

VR

Roughness factor

-

VS

Lubrication factor

-

VZ

Viscosity factor

-

VL

Lubricant factor

-

QH

Load and geometry factor

-

Equation 19.
QH=(FNcosβb2b2)0.05Kgm0.6ρn0.2vΣm0.35 Q_H=\frac{\left(F_N\cdot\frac{\cos\beta_{b2}}{b_2}\right)^{0.05}}{K_{gm}^{0.6}\cdot\rho_n^{0.2}\cdot v_{\Sigma m}^{0.35}}


Symbol

Description

Unit

QH

Load and geometry factor

-

FN

Normal force of the virtual gear

N

βb2

Helix angle at base circle of gear

deg

b2

Face width of gear

m

Kgm

Sliding factor

-

ρn

Equivalent radius of curvature

m

vΣm

Mean sum of velocity

m/s

If it is already known (for example, either internally confirmed or from tests), the coefficient of friction can also be specified as an input value instead of calculated according to WECH.

The tooth loss factor HV is also calculated according to WECH for the virtual crossed helical gears, and considers its load sharing and speed course over the path of contact. The calculation is finally performed by integrating the speed course over the path of contact.

For more detailed information on the calculation, refer to the Wech dissertation (in German):

WECH, L.: Untersuchungen zum Wirkungsgrad von Kegelrad- und Hypoidgetrieben, TU München, Diss., 1987

Load-dependent gear losses for worm gear stages

The load-dependent gear losses of worm gear stages are calculated according to DIN 3996.

For the driving worm gear:

Equation 20.
PVZP=PAn(1-ηZ) P_{VZP}=P_{An}\cdot\left(1-\eta_Z\right)


with

Equation 21.
ηZ=tan(γm)tan(γm)+arctan(μmZ) \eta_Z=\frac{\tan\left(\gamma_m\right)}{\tan\left(\gamma_m\right)+\arctan\left(\mu_{mZ}\right)}


For the driven worm gear:

Equation 22.
PVZP=PAn(1-ηZ*) P_{VZP}=P_{An}\cdot\left(1-\eta_Z^*\right)


with

Equation 23.
ηZ*=tan(γm)-arctan(μmZ)tan(γm) \eta_Z^*=\frac{\tan\left(\gamma_m\right)-\arctan\left(\mu_{mZ}\right)}{\tan\left(\gamma_m\right)}


Symbol

Description

Unit

PVZP

Load-dependent gear losses

W

PAn

Input power

W

ηZ

Gear efficiency

-

γm

Reference lead angle

deg

µmZ

Average gear friction coefficient

-

There are different methods for calculating the average gear friction coefficient. They are described in more detail below.

Calculation of the average gear friction coefficient according to the Oehler dissertation (2018) was integrated into the 2019 revision of DIN 3996. Part of the work for this dissertation was performed within FVA Research Project 729 I, and is documented in the final report (2017).

The average gear friction coefficient is calculated as follows:

Equation 24.
μmZ=ΨμGr+(1-Ψ)μFl \mu_{mZ}=\Psi\cdot\mu_{Gr}+\left(1-\Psi\right)\cdot\mu_{Fl}


Symbol

Description

Unit

µmZ

Average gear friction coefficient

-

µGr

Boundary friction coefficient

-

µFl

Liquid friction coefficient

-

Ψ

Solid load bearing amount

-

The boundary friction coefficient depends on the type of base oil, the average flank pressure, as well as the material of the worm and worm gear.

The solid load bearing amount depends on the average minimum lubrication gap thickness, the surface topography of the worm and gear flanks, and their materials.

The liquid friction coefficient is calculated from the average shear stress in the lubrication gap, average flank pressure, and the solid load bearing amount.

Even though the standard is no longer valid, the average gear friction coefficient can still be calculated according to DIN 3996:2012 for comparison purposes.

The associated formula is as follows:

Equation 25.
μmZ=μ0TYSYGYWYR \mu_{mZ}=\mu_{0T}\cdot Y_S\cdot Y_G\cdot Y_W\cdot Y_R


Symbol

Description

Unit

µmZ

Average gear friction coefficient

-

µ0T

Basic friction coefficient

-

YS

Size factor

-

YG

Geometry factor

-

YW

Material factor

-

YR

Roughness factor

-

Load-independent gear losses for cylindrical, bevel, and hypoid gears

No-load gear losses include splash, squeeze, ventilation, and pulse losses. These losses are speed-dependent but not load-dependent. Load-independent gear losses are typically much smaller than load-dependent gear losses.

Load-independent gear losses can be calculated according to various methods, depending on the type of lubrication and the circumferential speed.

Immersion lubrication

Squeeze and splash losses are considered with immersion lubrication.

Equation 26.
PVZ0,tauch=PVZ0,quetsch+PVZ0,plansch P_{VZ0,tauch}=P_{VZ0,quetsch}+P_{VZ0,plansch}


Symbol

Description

Unit

PVZ0,tauch

Load-independent gear losses with immersion lubrication

W

PVZ0,quetsch

Squeeze losses: squeezing out of excess oil in the tooth contact

W

PVZ0,plansch

Splash losses: splashing of the gears in the oil

W

Whether the squeeze and splash losses should be determined according to MAUZ or WALTER can be specified individually for all cylindrical gear stages. The default is calculation according to MAUZ. Detailed warnings will be issued if the validity range of the MAUZ or WALTER calculation equations are exceeded; however, the calculation will continue if possible.

The entire hydraulic torque losses (i.e., the sum of the squeeze and splash torque losses) are transferred to the pinion or wheel shaft, depending on the load path.

Transferred to the pinion shaft:

Equation 27.
TVZ0,tauch=(TVZ0,plansch,Ritzel+z1z2TVZ0,plansch,Rad)KP1G+TVZ0,quetsch T_{VZ0,tauch}=\left(T_{VZ0,plansch,Ritzel}+\frac{z_1}{z_2}\cdot T_{VZ0,plansch,Rad}\right)\cdot K_{P1G}+T_{VZ0,quetsch}


Transferred to the wheel shaft:

Equation 28.
TVZ0,tauch=(TVZ0,plansch,Ritzelz2z1+TVZ0,plansch,Rad)KP1G+TVZ0,quetsch T_{VZ0,tauch}=\left(T_{VZ0,plansch,Ritzel}\cdot\frac{z_2}{z_1}+T_{VZ0,plansch,Rad}\right)\cdot K_{P1G}+T_{VZ0,quetsch}


Symbol

Description

Unit

TVZ0,tauch

Load-independent gear torque loss with immersion lubrication

Nm

TVZ0,quetsch

Squeeze torque losses

Nm

TVZ0,plansch,Ritzel/Rad

Splash torque loss of the pinion/wheel

Nm

KP1G

Correction factor for the simultaneously immersed mating gear

-

z1/2

Number of teeth of the pinion/wheel

-

The power loss is calculated according to the reference shaft with the following formula:

Equation 29.
PVZ0=TVZ0,tauch2πn P_{VZ0}=T_{VZ0,tauch}\cdot2\cdot\pi\cdot n


Symbol

Description

Unit

PVZ0,tauch

Load-independent gear losses with immersion lubrication

W

TVZ0,tauch

Load-independent gear torque loss with immersion lubrication

Nm

n

Shaft speed

1/s

Squeeze losses according to MAUZ

Different operating cases are considered in the squeeze losses according to MAUZ.

If both shafts are arranged horizontally and the immersed gear feeds the oil:

  • directly into the tooth mesh, case W1

  • indirectly into the tooth mesh via the wall of the casing, case W2

If the shafts are arranged vertically, the direction of rotation is inconsequential. This corresponds to cases S1 and S2.

operatingConditionLossesImmersionSqueezingMauz.PNG

Figure: operating cases

The squeeze torque loss of the mesh is calculated as:

Equation 30.
TVZ0,quetsch=0.0235ρOilbrwvt1.2CSp T_{VZ0,quetsch}=0.0235\cdot\rho_{Oil}\cdot b\cdot r_w\cdot v_t^{1.2}\cdot C_{Sp}


where

  • Operating case W1: CSp = e/hc

  • Operating case W2: CSp = 0

  • Operating cases S1 and S2: CSp = (e/hc

Symbol

Description

Unit

TVZ0,quetsch

Squeeze torque loss

Nm

ρOil

Oil density at operating temperature

kg/m³

b

Minimum face width of pinion and wheel

m

rw

Radius at pitch circle of the deepest immersed gear

m

vt

Circumferential speed at pitch circle

m/s

CSp

Splash oil factor

-

e

Immersion depth of the deepest immersed gear

mm

hc

Height of the point of contact above the point of deepest immersion of the cylindrical gear stage

Splash losses according to MAUZ

The splash torque losses are calculated separately at the pinion and gear, with a correction factor to compensate for the reciprocal influence of the gears.

Equation 31.
TVZ0,plansch=1.8610-3(νOilν0)-1.255(rar0)CWZCWACMCVνOilρOilABvt T_{VZ0,plansch}=1.86\cdot10^{-3}\cdot\left(\frac{\nu_{Oil}}{\nu_0}\right)^{-1.255}\cdot\left(\frac{r_a}{r_0}\right)\cdot C_{WZ}\cdot C_{WA}\cdot C_M\cdot C_V\cdot\nu_{Oil}\cdot\rho_{Oil}\cdot A_B\cdot v_t


Symbol

Description

Unit

TVZ0,plansch

Splash torque loss

Nm

νOil

Kinematic viscosity at operating temperature (ν0 = 1)

m²/s

ra

Radius at tip circle (r0 = 1)

m

CWZ

Wall distance factor, oil feed side

-

CWA

Wall distance factor, oil outflow side

-

CM

Module factor

-

CV

Oil volume factor

-

ρOil

Oil density at operating temperature

kg/m³

AB

Immersed wheel surface in operation

vt

Circumferential speed at pitch circle

m/s

Equation 32.
CWZ=(0.08srZra-0.1)(vtvt0)-0.08srZra+1.1 C_{WZ}=\left(0.08\cdot\frac{s_{rZ}}{r_a}-0.1\right)\cdot\left(\frac{v_t}{v_{t0}}\right)-0.08\cdot\frac{s_{rZ}}{r_a}+1.1


for srZ ≤ 1.3 and vt ≥ 10 m/s

Equation 33.
CWZ=1.0 C_{WZ}=1.0


for srZ > 1.3 or vt < 10 m/s

Symbol

Description

Unit

CWZ

Wall distance factor, oil feed side

-

srZ

Distance between the tip circle diameter and casing on the immersed side of the gear

m

ra

Radius at tip circle (r0 = 1)

m

vt

Circumferential speed at pitch circle (vt0 = 10)

m/s

Equation 34.
CWA=(0.06-0.05srAra)(vtvt0)+0.05srAra+0.95 C_{WA}=\left(0.06-0.05\cdot\frac{s_{rA}}{r_a}\right)\cdot\left(\frac{v_t}{v_{t0}}\right)+0.05\cdot\frac{s_{rA}}{r_a}+0.95


for srA ≤ 1.3 and vt ≥ 10 m/s

Equation 35.
CWA=1.0 C_{WA}=1.0


for srA > 1.3 or vt < 10 m/s

Symbol

Description

Unit

CWA

Wall distance factor, oil outflow side

-

srA

Distance between the tip circle diameter and the casing on the emerged side of the gear

m

ra

Radius at tip circle

m

vt

Circumferential speed at pitch circle (vt0 = 10)

m/s

Equation 36.
CM=(mnmn0)17 C_M=\left(\frac{m_n}{m_{n0}}\right)^{\frac{1}{7}}


Symbol

Description

Unit

CM

Module factor

-

mn

Normal module (mn0 = 0.0045 · mn)

m

Equation 37.
CV=1 C_V=1


for VG/VOil ≥ 2.5

Equation 38.
CV=1+15(VOilQV0VG-1)(vtvt0-1) C_V=1+\frac{1}{5}\cdot\left(\frac{V_{Oil}\cdot Q_{V0}}{V_G}-1\right)\cdot\left(\frac{v_t}{v_{t0}}-1\right)


where QV 0 = 0.74 · e-0.438

for VG/VOil < 2.5

Symbol

Description

Unit

CV

Oil volume factor

-

VG

Volume of the casing

VOil

Oil volume in the casing

QV0

Factor for consideration of the immersion depth

-

e

Immersion depth

m

vt

Circumferential speed at pitch circle (vt0 = 10)

m/s

Equation 39.
AB=ra2(α-sinα)+αrab A_B=r_a^2\cdot\left(\alpha-\sin\alpha\right)+\alpha\cdot r_a\cdot b


where

Equation 40.
α=2arccos(1-eBra) \alpha=2\cdot\arccos\left(1-\frac{e_B}{r_a}\right)


Equation 41.
eB=e-(0.4vt)10-3 e_B=e-\left(0.4\cdot v_t\right)\cdot10^{-3}


for vt ≤ 30 m/s

Equation 42.
eB=e-0.012mn e_B=e-0.012\cdot m_n


for vt > 30 m/s

Symbol

Description

Unit

AB

Immersed wheel surface in operation

ra

Radius at tip circle

m

α

Opening angle of the immersed surface

deg

b

Face width

m

eB

Operating immersion depth

m

e

Immersion depth

m

vt

Circumferential speed at pitch circle

m/s

mn

Normal module

m

immersionAreaLossesImmersionSqueezingMauz.PNG

Figure: Immersed wheel surface in operation and operating conditions

Equation 43.
KP1G=(vtvt0)13logνOil+6log(99ν0)b3b03 K_{P1G}=\left(\frac{v_t}{v_{t0}}\right)^{\frac{1}{3}\cdot\sqrt{\frac{\log\nu_{Oil}+6}{\log\left(99\cdot\nu_0\right)}}\cdot\sqrt[3]{\frac{b}{3\cdot b_0}}}


for operating case W1, direct oil feed into the tooth mesh

Equation 44.
KP1G=1.0 K_{P1G}=1.0


for operating case W2, indirect oil feed into the tooth mesh via the wall of the casing

Symbol

Description

Unit

KP1G

Correction factor for the simultaneously immersed mating gear

-

vt

Circumferential speed at pitch circle (vt0 = 10)

m/s

νOil

Kinematic viscosity at operating temperature (ν0 = 1)

m²/s

b

Face width (b0 = 0.01)

m

This calculation method was derived from tests. The limit values of the tests also constitute the validity range of the method. However, these limits are conservative and results outside this range may also be valid.

Influencing variable

Symbol

Unit

from

to

Reynolds number

Re=(vt·ra)/ν

-

4125

531428

Relative immersion depth

e/ra

-

0.04

1.0 (2.0)

Relative radial wall distance on the feed/outflow side

(srZ/rA)/ra

-

0.03

3.15

Immersion depth relative to the height of the pitch point

e/hc

-

0.02

1.0

Volume ratio

VG/VOil

-

2.0

12.0

Gear ratio

u

-

1.0

2.0

Tip circle radius

ra

mm

66

124

Face width

b

mm

10

60

Normal module

mn

mm

3

6

Circumferential speed

vt

m/s

10

60

Immersion depth

e

mm

5

135

Kinematic oil viscosity

ν

mm²/s

14

240

Density of the oil

ρ

kg/m³

855

881

Table: Validity range of the Mauz calculation equations

The total hydraulic torque loss corresponds to the sum of the squeeze and splash torque losses, and is relative to the pinion or wheel shaft, depending on the load path.

Relative to the pinion shaft:

Equation 45.
TVZ0,tauch=TVZ0,plansch,Ritzel+TVZ0,plansch,Rad1u+TVZ0,quetsch T_{VZ0,tauch}=T_{VZ0,plansch,Ritzel}+T_{VZ0,plansch,Rad}\cdot\frac{1}{u}+T_{VZ0,quetsch}


Relative to the wheel shaft:

Equation 46.
TVZ0,tauch=TVZ0,plansch,Ritzelu+TVZ0,plansch,Rad+TVZ0,quetsch T_{VZ0,tauch}=T_{VZ0,plansch,Ritzel}\cdot u+T_{VZ0,plansch,Rad}+T_{VZ0,quetsch}


Symbol

Description

Unit

TVZ0,tauch

Load-independent gear torque loss with splash lubrication

Nm

TVZ0,quetsch

Squeeze torque loss

Nm

TVZ0,plansch,Ritzel/Rad

Splash loss of pinion/wheel

Nm

u

Gear ratio (z2/z1)

-

The power loss is calculated according to the reference shaft with the following formula:

Equation 47.
PVZ0=TVZ0,tauch2πn P_{VZ0}=T_{VZ0,tauch}\cdot2\cdot\pi\cdot n


Symbol

Description

Unit

PVZ0,tauch

Load-independent gear losses with splash lubrication

W

TVZ0,tauch

Load-independent gear torque losses with splash lubrication

Nm

n

Shaft speed

1/s

Squeeze losses according to WALTER

The squeeze torque loss of the gear mesh is calculated as follows:

Equation 48.
TVZ0,quetsch=3.8810-10CSpρOilrwb1.6vt2νOil-0.15 T_{VZ0,quetsch}=3.88\cdot10^{-10}\cdot C_{Sp}\cdot\rho_{Oil}\cdot r_w\cdot b^{1.6}\cdot v_t^2\cdot\nu_{Oil}^{-0.15}


for direct oil feed into the gear mesh

Equation 49.
CSp=(ehc)1.5 C_{Sp}=\left(\frac{e}{h_c}\right)^{1.5}


for indirect oil feed into the gear mesh via the wall of the casing

Equation 50.
CSp=(ehc)1.5(2hclh) C_{Sp}=\left(\frac{e}{h_c}\right)^{1.5}\cdot\left(\frac{2\cdot h_c}{l_h}\right)


Symbol

Description

Unit

TVZ0,quetsch

Squeeze torque loss

Nm

CSp

Splash oil factor

-

ρOil

Oil density at operating temperature

kg/m³

rw

Radius at pitch circle of the deepest immersed gear

m

b

Minimum face width of pinion and wheel

m

vt

Circumferential speed at pitch circle

m/s

νOil

Kinematic viscosity at operating temperature (ν0 = 1)

m²/s

e

Immersion depth of the deepest immersed gear

m

hc

Height of the point of contact above the deepest immersed point of the cylindrical gear stage

m

lh

Hydraulic length

m

operatingConditionLossesImmersionSqueezingWalter.PNG

Figure: Direct oil feed into the gear mesh (left), indirect via the wall of the casing (right)

Splash losses according to WALTER

The splash torque losses are calculated separately for the pinion and gear.

Equation 51.
TVZ0,plansch=CWCVCPLρOilvt2ra2b T_{VZ0,plansch}=C_W\cdot C_V\cdot C_{PL}\cdot\rho_{Oil}\cdot v_t^2\cdot r_a^2\cdot b


Symbol

Description

Unit

TVZ0,plansch

Splash torque loss

Nm

CW

Wall distance factor

-

CV

Oil volume factor

-

CPL

Splash torque factor

-

ρOil

Oil density at operating temperature

kg/m³

vt

Circumferential speed at pitch circle

m/s

ra

Radius at tip circle

m

b

Face width

m

Equation 52.
CW=1 C_W=1


for srZ/(2 · ra) ≥ 1

Equation 53.
CW=1-0.02(1-srZ2ra)1.8(vt2gra)0.45 C_W=1-0.02\cdot\left(1-\frac{s_{rZ}}{2\cdot r_a}\right)^{1.8}\cdot\left(\frac{v_t^2}{g\cdot r_a}\right)^{0.45}


for srZ/(2 · ra) < 1

Symbol

Description

Unit

CW

Wall distance factor

-

srZ

Distance between the tip circle diameter and casing at the immersing side of the gear

m

ra

Radius at tip circle

m

vt

Circumferential speed at pitch circle

m/s

g

Gravitational constant

m³/(kg · s²)

Equation 54.
CV=1 C_V=1


for VZ/VOil ≤ 0.1

Equation 55.
CV=1-(VZVOil-0.1)0.4 C_V=1-\left(\frac{V_Z}{V_{Oil}}-0.1\right)^{0.4}


for VZ/VOil > 0.1

Symbol

Description

Unit

CV

Oil volume factor

-

VZ

Volume of oil displaced by the gear

VOil

Oil volume in the casing

Equation 56.
CPL=0.027(era)1.5(bra)-0.4(vtraνOil)0.2(vt2gra)-0.5 C_{PL}=0.027\cdot\left(\frac{e}{r_a}\right)^{1.5}\cdot\left(\frac{b}{r_a}\right)^{-0.4}\cdot\left(\frac{v_t\cdot r_a}{\nu_{Oil}}\right)^{0.2}\cdot\left(\frac{v_t^2}{g\cdot r_a}\right)^{-0.5}


Symbol

Description

Unit

CPL

Splash torque factor

-

e

Immersion depth

m

ra

Radius at tip circle

m

b

Face width

m

vt

Circumferential speed at pitch circle

m/s

νOil

Kinematic viscosity at operating temperature

m²/s

g

Gravitational constant

m³/(kg · s²)

When CV = 1 and CW = 1, it results in the following simplified equation:

Equation 57.
TVZ0,plansch=0.027g0.5ρOile1.5b0.6ra1.6vt1.2νOil-0.2 T_{VZ0,plansch}=0.027\cdot g^{0.5}\cdot\rho_{Oil}\cdot e^{1.5}\cdot b^{0.6}\cdot r_a^{1.6}\cdot v_t^{1.2}\cdot\nu_{Oil}^{-0.2}


Symbol

Description

Unit

TVZ0,plansch

Splash torque loss

Nm

g

Gravitational constant

m³/(kg · s²)

ρOil

Oil density at operating temperature

kg/m³

e

Immersion depth

m

b

Face width

m

ra

Radius at tip circle

m

vt

Circumferential speed at pitch circle

m/s

νOil

Kinematic viscosity at operating temperature

m²/s

This calculation method was derived from tests. The limit values of the tests also constitute the validity range of the method. However, these limits are conservative and results outside this range may also be valid.

Influencing variable

Symbol

Unit

from

to

Reynolds number

Re=(vt·ra)/ν

-

7980

471429

Froude number

Fr=vt²/(g · ra)

-

93

4645

Relative immersion depth

e/ra

-

0.12

1.71

Relative width

b/ra

-

0.09

0.63

Relative tooth depth

h/mn

-

2.25

-

Relative radial wall distance on the feed side

srZ/(2ra)

-

0.16

1.56

Relative oil volume

VZ/VOil

-

0.01

0.20

Hydraulic length

lH=(4AG)/U

mm

629

1332

Tip circle radius

ra

mm

79

110

Face width

b

mm

5

10

Normal module

mn

mm

3

6

Circumferential speed

vt

m/s

10

60

Kinematic oil viscosity

ν

mm²/s

14

99

Density of the oil

ρ

kg/m³

850

-

Table: Validity range for the Walter calculation equations

Injection lubrication

For injection lubrication, the calculation method is automatically determined by the existing circumferential speed vt. Thus, for vt > 60 m/s, the squeeze and pulse losses are calculated according to BUTSCH; for vt < 60 m/s, the squeeze losses are calculated according to MAUZ and the pulse losses are calculated according to ARIURA. Detailed warnings are issued if the validity range of the BUTSCH squeeze loss calculation equations is left; however, the calculation continues if possible.

Equation 58.
PVZ0,einspritz=PVZ0,impuls+PVZ0,quetsch+PVZ0,ventilation P_{VZ0,einspritz}=P_{VZ0,impuls}+P_{VZ0,quetsch}+P_{VZ0,ventilation}


Symbol

Description

Unit

PVZ0,einspritz

Load-independent gear losses with injection lubrication

W

PVZ0,impuls

Pulse losses: flow deflection of an oil stream impacting the tooth flanks

W

PVZ0,quetsch

Squeeze losses: squeezing out of excess oil in the tooth contact

W

PVZ0,ventilation

Ventilation losses: turbulence of the injected oil

W

Splash losses do not occur with injection lubrication, or are negligible and therefore not calculated.

Ventilation losses are calculated according to MAURER, as long as the calculation is not disabled.

For squeezing losses, a differentiation is made between injection at the beginning and end of the engagement.

injectionDirectionSqueezingLosses.PNG

Figure: Injection variants

Injection at the beginning of the mesh (A1 and A1’) :

Equation 59.
TVQ=C14.12ρOilQe0.75rwvt1.25b0.25mn0.25(νOilν0)0.25(hZhZ0)0.5 T_{VQ}=C_1\cdot4.12\cdot\rho_{Oil}\cdot Q_e^{0.75}\cdot r_w\cdot v_t^{1.25}\cdot b^{0.25}\cdot m_n^{0.25}\cdot\left(\frac{\nu_{Oil}}{\nu_0}\right)^{0.25}\cdot\left(\frac{h_Z}{h_{Z0}}\right)^{0.5}


where C1 = 1 for injection variant A1

where C1 = 0.9 for injection variant A1‘

Injection at the end of the mesh (A2 and A2’) :

Equation 60.
TVQ=C2ρOilQerw(vt+vs) T_{VQ}=C_2\cdot\rho_{Oil}\cdot Q_e\cdot r_w\cdot\left(v_t+v_s\right)


where C2 = 1 for injection variant A2

where C2 = 0.85 for injection variant A2‘

Symbol

Description

Unit

TVQ

Squeeze torque loss

Nm

C1/2

Constants, depending on the injection variant

-

ρOil

Oil density at operating temperature

kg/m³

Qe

Injected oil volume flow rate

m³/s

rw

Radius at pitch circle

m

vt

Circumferential speed at pitch circle

m/s

vs

Injection speed

m/s

b

Face width

m

mn

Normal module

m

νOil

Kinematic viscosity at operating temperature (ν0 = 1)

m²/s

hZ

Working depth (hZ0 = 2.3 ·mn)

m

MAUZ differentiates between injection at the beginning and end of the mesh. The following relative values are introduced for both cases:

Equation 61.
vt*=vt100[m/s] v_t^*=\frac{v_t}{100[m/s]}


Equation 62.
Qe*=Qe61021[m3/s] Q_e^*=Q_e\cdot\frac{6\cdot10^2}{1[m^3/s]}


Equation 63.
b*=b0.1[m] b^*=\frac{b}{0.1[m]}


Equation 64.
r*=2uu+1 r^*=\frac{2\cdot u}{u+1}


Injection into the beginning of the mesh (A1) :

Equation 65.
TVQ=C1vt*+C2 T_{VQ}=C_1\cdot v_t^*+C_2


where

Equation 66.
C1=18(Qe*b*)0.8b*(b*)1.8(r*)1.1-12.75Qe*r* C_1=18\cdot\left(\frac{Q_e^*}{b^*}\right)^{\frac{0.8}{b^*}}\cdot\left(b^*\right)^{1.8}\cdot\left(r^*\right)^{1.1}-12.75\cdot Q_e^*\cdot r^*


Equation 67.
C2=8(Qe*b*)0.5(b*)-0.3(r*)1.1+2.35Qe*r* C_2=8\cdot\left(\frac{Q_e^*}{b^*}\right)^{0.5}\cdot\left(b^*\right)^{-0.3}\cdot\left(r^*\right)^{1.1}+2.35\cdot Q_e^*\cdot r^*


Injection into the end of the mesh (A2) :

Equation 68.
TVQ=C3+C4(vt*-0.6)+C5((vt*)2-0.62) T_{VQ}=C_3+C_4\cdot\left(v_t^*-0.6\right)+C_5\cdot\left(\left(v_t^*\right)^2-0.6^2\right)


where

Equation 69.
C3=0.5-(r*)-2 C_3=0.5-\left(r^*\right)^{-2}


Equation 70.
C4=17.2(r*)1.5-12.75(Qe*b*)r* C_4=17.2\cdot\left(r^*\right)^{1.5}-12.75\cdot\left(\frac{Q_e^*}{b^*}\right)\cdot r^*


Equation 71.
C5=-6.3(r*)1.51+(Qe*b*) C_5=-6.3\cdot\frac{\left(r^*\right)^{1.5}}{1+\left(\frac{Q_e^*}{b^*}\right)}


Symbol

Description

Unit

TVQ

Squeeze torque loss

Nm

C3/4/5

Constants, depending on the injection variant

-

vt*

Relative dimensionless circumferential speed at pitch circle

-

vt

Circumferential speed at pitch circle

m/s

Qe*

Relative dimensionless injected oil volume flow

-

Qe

Injected oil volume flow

m³/s

b*

Relative dimensionless face width

-

b

Face width

m

r*

Relative dimensionless radius

-

u

Gear ratio (z2/z1)

-

The validity range for both injection variants is:

  • ISO VG oil viscosity 22 to 86

  • Face width 0.075 m ≤ b ≤ 0.125 m

  • Circumferential speed 60 m/s ≤ vt ≤ 200 m/s

  • Solid steam nozzles

Injection at the beginning of the mesh (A1 and A1‘):

Equation 72.
TVI=rwρOilQe(vt-vs)C1 T_{VI}=r_w\cdot\rho_{Oil}\cdot Q_e\cdot\left(v_t-v_s\right)\cdot C_1


Injection at the end of the mesh (A2 and A2‘):

Equation 73.
TVI=rwρOilQe(vt+vs)C1 T_{VI}=r_w\cdot\rho_{Oil}\cdot Q_e\cdot\left(v_t+v_s\right)\cdot C_1


where C1 = 1 for injection variant A1

where C1 = 0.9 for injection variant A1‘

where C1 = 1 for injection variant A2

where C1 = 0.85 for injection variant A2‘

Symbol

Description

Unit

TVI

Pulse torque loss

Nm

C1

Constant, depending on the injection variant

-

rw

Radius at pitch point

m

ρOil

Oil density at operating temperature

kg/m³

Qe

Injected oil volume flow

m³/s

vt

Circumferential speed at pitch circle

m/s

vs

Injection speed

m/s

If the injection speed drives the gears, this results in negative losses. In this case, the pulse losses are set to 0.

Injection into the beginning of the mesh (A1 and A1‘):

Equation 74.
TVI=rw2ρOilQe(vt-vs) T_{VI}=r_{w2}\cdot\rho_{Oil}\cdot Q_e\cdot\left(v_t-v_s\right)


Injection into the end of the mesh (A2 and A2‘):

Equation 75.
TVI=rw2ρOilQe(vt+vs) T_{VI}=r_{w2}\cdot\rho_{Oil}\cdot Q_e\cdot\left(v_t+v_s\right)


Symbol

Description

Unit

TVI

Pulse torque loss

Nm

rw2

Radius of the wheel at pitch circle

m

ρOil

Oil density at operating temperature

kg/m³

Qe

Injected oil volume flow

m³/s

vt

Circumferential speed at pitch circle

m/s

vs

Injection speed

m/s

If the injection speed drives the gears, this results in negative losses. In this case, the pulse losses are set to 0.

The amount of ventilation losses for the pinion and the wheel are calculated as:

Equation 76.
TVV,Ritzel=1.3710-9vt1.90dw11.60b10.52mt0.69 T_{VV,Ritzel}=1.37\cdot10^{-9}\cdot v_t^{1.90}\cdot d_{w1}^{1.60}\cdot b_1^{0.52}\cdot m_t^{0.69}


Equation 77.
TVV,Rad=1.3710-9vt1.90dw21.60b20.52mt0.69 T_{VV,Rad}=1.37\cdot10^{-9}\cdot v_t^{1.90}\cdot d_{w2}^{1.60}\cdot b_2^{0.52}\cdot m_t^{0.69}


The amount of torque caused by the mating gear is calculated as:

Equation 78.
TVV,Eingriff=1.1710-6vt1.95u0.73b1.37 T_{VV,Eingriff}=1.17\cdot10^{-6}\cdot v_t^{1.95}\cdot u^{0.73}\cdot b^{1.37}


The ventilation torque loss of the gear pair is relative to the gear shaft. Therefore, the ventilation torque loss of the pinion is multiplied by the gear ratio to determine the losses of the gear pair. The ventilation torque loss of the gear pair is then calculated as follows:

Equation 79.
TVV,Radpaar=(TVV,Rad+uTVV,Ritzel+TVV,Eingriff)FWandFOil T_{VV,Radpaar}=\left(T_{VV,Rad}+u\cdot T_{VV,Ritzel}+T_{VV,Eingriff}\right)\cdot F_{Wand}\cdot F_{Oil}


where

Equation 80.
FWand=0.763su0.26svw-0.0043(2.11su-9.53) F_{Wand}=0.763\cdot s_u^{0.26}\cdot s_{vw}^{-0.0043\cdot\left(2.11\cdot s_u-9.53\right)}


Equation 81.
FOil=0.934Qe0.163 F_{Oil}=0.934\cdot Q_e^{0.163}


Symbol

Description

Unit

TVV,Ritzel/Rad

Ventilation torque loss of pinion/gear

Nm

vt

Circumferential speed at pitch circle

m/s

dw1/2

Pitch diameter of pinion/gear

mm

b1/2

Face width of pinion/gear

mm

TVV,Eingriff

Ventilation torque loss from the mating gear

Nm

u

Gear ratio (z2/z1)

-

b

Minimum face width of pinion and gear

mm

TVV,Radpaar

Ventilation torque loss of the gear pair

Nm

FWand

Factor for wall effects

-

FOil

Factor for oil effects

-

su

Minimum frontal distance to casing wall

mm

svw

Minimum radial distance to casing wall

mm

Qe

Injected oil volume flow

l/min

Load-independent gear losses for worm stages

A model from FVA 729 I for calculation of the splash power loss of cylindrical gear stages is applied to worm gear stages:

Equation 82.
PVZ0=(12ρOil(πn30)2A(dm2)3Cm)ω P_{VZ0}=\left(\frac{1}{2}\cdot\rho_{Oil}\cdot\left(\frac{\pi\cdot n}{30}\right)^2\cdot A\cdot\left(\frac{d_m}{2}\right)^3\cdot C_m\right)\cdot\omega


where

Equation 83.
Cm=(2edm)0.45(V0dm)0.1Fr-0.6Re-0.21 C_m=\left(\frac{2\cdot e}{d_m}\right)^{0.45}\cdot\left(\frac{V_0}{d_m}\right)^{0.1}\cdot Fr^{-0.6}\cdot Re^{-0.21}


Equation 84.
Fr=ω2dm2g Fr=\frac{\omega^2\cdot d_m}{2\cdot g}


Equation 85.
Re=ω2dm24νOil Re=\frac{\omega^2\cdot d_m^2}{4\cdot\nu_{Oil}}


Symbol

Description

Unit

PVZ0

Load-independent gear losses

W

ρOil

Oil density at operating temperature

kg/m³

n

Speed

1/min

A

Oil-covered surface

mm²

dm

Reference circle/pitch diameter

m

ω

Rotational speed

1/s

Cm

Splash factor

-

e

Immersion depth

m

V0

Oil volume

Fr

Froude number

-

g

Gravitational constant

m³/(kg · s²)

Re

Reynolds number

-

νOil

Kinematic viscosity at operating temperature

m²/s

Only the splash losses of the worm gear are calculated. The worm itself is not considered, as with shafts.

Rolling bearing losses

The power loss from rolling bearings is determined using the current catalog methods of the manufacturers SKF, SCHAEFFLER and TIMKEN. If this is not possible or not desired, the power loss can be calculated according to ISO 14179-2. This corresponds to the SKF catalog method from 1994.

lagerKataloge.png

Figure: Current SKF, SCHAEFFLER, and TIMKEN bearing catalogs from 2020

The following only provides a rough overview of the calculation methods. For more detailed information, refer to the manufacturers' bearing catalogs, which are available free of charge.

SKF 2020

The SKF catalog method is the most precise and detailed calculation approach for determining the power loss. The individual friction torque amounts are summed to determine the total torque loss. This can also be used to identify which amount of torque loss is the greatest and where improvements may be achieved.

Equation 86.
M=Mrr+Msl+Mseal+Mdrag M=M_{rr}+M_{sl}+M_{seal}+M_{drag}


Symbol

Description

Unit

M

Total friction torque

Nm

Mrr

Rolling friction torque

Nm

Msl

Sliding friction torque

Nm

Mseal

Friction torque of contact seals

Nm

Mdrag

Friction torque due to flow, splash, or spray losses

Nm

Equation 87.
Mrr=ϕishϕrsGrr(νOiln)0.6 M_{rr}=\phi_{ish}\cdot\phi_{rs}\cdot G_{rr}\cdot(\nu_{Oil}\cdot n)^{0.6}


Symbol

Description

Unit

Mrr

Rolling friction torque

Nm

ϕish

Lubricating film thickness factor for rolling friction torque

-

ϕrs

Kinematic lubricant displacement factor for rolling friction torque

-

Grr

Basic rolling friction value, depending on the bearing geometry and input load

-

νOil

Kinematic operating oil viscosity

mm²/s

n

Relative speed between bearing inner and outer ring

1/min

Equation 88.
Msl=Gslμsl M_{sl}=G_{sl}\cdot\mu_{sl}


Symbol

Description

Unit

Msl

Sliding friction torque

Nm

Gsl

Basic sliding friction value, depending on the bearing geometry and input load

-

µsl

Coefficient of sliding friction

-

Equation 89.
Mseal=KS1dSβ+KS2 M_{seal}=K_{S1}\cdot d_S^{\beta}+K_{S2}


Symbol

Description

Unit

Mseal

Friction torque of the contact seals

Nm

KS1

Coefficient of sealing friction 1, depending on the seal and bearing types and the bearing dimensions

-

dS

Diameter of the mating surface of the seal

mm

β

Sealing friction exponent, depending on the seal and bearing type

-

KS2

Coefficient of sealing friction 2, depending on the seal and bearing types and the bearing dimensions

-

Ball bearings

Equation 90.
Mdrag=0.4VMKballdm5n2+1.09310-7n2dm3(ndm2ftνOil)-1.379RS M_{drag}=0.4\cdot V_M\cdot K_{ball}\cdot d_m^5\cdot n^2+1.093\cdot10^{-7}\cdot n^2\cdot d_m^3\cdot\left(\frac{n\cdot d_m^2\cdot f_t}{\nu_{Oil}}\right)^{-1.379}\cdot R_S


Cylindrical roller bearings

Equation 91.
Mdrag=4VMKrolldm4n2+1.09310-7n2dm3(ndm2ftνOil)-1.379RS M_{drag}=4\cdot V_M\cdot K_{roll}\cdot d_m^4\cdot n^2+1.093\cdot10^{-7}\cdot n^2\cdot d_m^3\cdot\left(\frac{n\cdot d_m^2\cdot f_t}{\nu_{Oil}}\right)^{-1.379}\cdot R_S


Symbol

Description

Unit

Mdrag

Friction torque due to flow, splash, or spray losses for oil bath lubrication

Nm

VM

Flow loss factor

-

Kball, Kroll

Rolling element-related constants, depending on the bearing type and dimensions as well as the number of rolling elements

-

dm

Average bearing diameter 0.5·(d+D)

mm

n

Relative speed between bearing inner and outer ring

1/min

ft

Factor for immersion depth in oil bath, depending on the bearing dimensions and oil level

-

νOil

Kinematic operating oil viscosity

mm²/s

RS

Oil bath factor, depending on the bearing type and dimensions as well as the oil level

-

Additional information on the calculation can be found in the SKF Bearing Catalog.

There is also an SKF Online Tool for bearing calculations, which includes the power loss.

SCHAEFFLER 2020

The SCHAEFFLER catalog method is based on simple empirically determined characteristics for calculation of the total friction torque as a function of the load-dependent and load-independent loss amounts. Axial loads are considered separately.

Equation 92.
MR=M0+M1+M2 M_R=M_0+M_1+M_2


Symbol

Description

Unit

MR

Total friction torque

Nm

M0

Load-independent bearing friction torque

Nm

M1

Load-dependent bearing friction torque

Nm

M2

Bearing friction torque for axially loaded cylindrical roller bearings

Nm

Speed-dependent friction torque

Equation 93.
M0=10-7f0(νOiln)23dm3 M_0=10^{-7}\cdot f_0\cdot(\nu_{Oil}\cdot n)^{\frac{2}{3}}\cdot d_m^3


for

Equation 94.
νOiln2000mm2smin \nu_{Oil}\cdot n\ge2000\frac{mm^2}{s\cdot\min}


or

Equation 95.
M0=16010-7f0dm3 M_0=160\cdot10^{-7}\cdot f_0\cdot d_m^3


for

Equation 96.
νOiln<2000mm2smin \nu_{Oil}\cdot n<2000\frac{mm^2}{s\cdot\min}


Symbol

Description

Unit

M0

Load-independent bearing friction torque

Nm

f0

Load-dependent bearing friction torque

-

νOil

Kinematic operating oil viscosity

mm²/s

n

Relative speed between bearing inner and outer ring

1/min

dm

Average bearing diameter 0.5·(d+D)

mm

Load-dependent friction torque

for needle and cylindrical roller bearings

Equation 97.
M1=f1Fdm M_1=f_1\cdot F\cdot d_m


for ball, bevel, and spherical roller bearings

Equation 98.
M1=f1P1dm M_1=f_1\cdot P_1\cdot d_m


Symbol

Description

Unit

M1

Load-dependent bearing friction torque

Nm

f1

Load-dependent bearing friction factor

-

F

Radial load for radial bearings and axial load for axial bearings

N

dm

Average bearing diameter 0.5·(d+D)

mm

P1

Relevant load for friction torque

N

Equation 99.
M2=f2Fadm M_2=f_2\cdot F_a\cdot d_m


Symbol

Description

Unit

M2

Bearing friction torque for axially loaded cylindrical roller bearings

Nm

f2

Bearing friction factor, depending on the axial load

-

Fa

Axial dynamic bearing load

N

dm

Average bearing diameter 0.5·(d+D)

mm

Additional information on the calculation can be found in the SCHAEFFLER Bearing Catalog.

There is also a SCHAEFFLER Online Tool for bearing calculations, which includes the power loss.

TIMKEN 2020

The TIMKEN catalog method is based on simple empirically determined characteristic values for calculation of the total friction torque as a function of the load-independent and load-dependent losses. The formula is very similar to the SCHAEFFLER calculation.

Equation 100.
M=f1Fβdm+10-7f0(νOiln)23dm3 M=f_1\cdot F_{\beta}\cdot d_m+10^{-7}\cdot f_0\cdot(\nu_{Oil}\cdot n)^{\frac{2}{3}}\cdot d_m^3


for

Equation 101.
νOiln2000mm2smin \nu_{Oil}\cdot n\ge2000\frac{mm^2}{s\cdot\min}


or

Equation 102.
M=f1Fβdm+16010-7f0dm3 M=f_1\cdot F_{\beta}\cdot d_m+160\cdot10^{-7}\cdot f_0\cdot d_m^3


for

Equation 103.
νOiln<2000mm2smin \nu_{Oil}\cdot n<2000\frac{mm^2}{s\cdot\min}


with

Radial ball bearings:

Equation 104.
Fβ=max(0.9Facotα-0.1Fr;Fr) F_{\beta}=\max(0.9\cdot F_a\cdot\cot\alpha-0.1\cdot F_r;F_r)


Radial cylindrical and spherical roller bearings:

Equation 105.
Fβ=max(0.8Facotα;Fr) F_{\beta}=\max(0.8\cdot F_a\cdot\cot\alpha;F_r)


Thrust, cylindrical roller, and spherical roller thrust bearings:

Equation 106.
Fβ=Fa F_{\beta}=F_a


Symbol

Description

Unit

M

Total friction torque

Nm

f1

Load-dependent bearing friction factor

-

Fβ

Bearing load for the load-dependent bearing friction torque

N

Fa, Fr

Axial or radial bearing load

N

α

Nominal contact angle

deg

f0

Load-independent bearing friction factor

-

dm

Average bearing diameter 0.5·(d+D)

mm

νOil

Kinematic operating oil viscosity

mm²/s

n

Relative speed between bearing inner and outer ring

1/min

Tapered roller bearings

Single-row:

Equation 107.
M=k1G1(nνOil)0.62(f3FrK)0.3 M=k_1\cdot G_1\cdot(n\cdot\nu_{Oil})^{0.62}\cdot\left(\frac{f_3\cdot F_r}{K}\right)^{0.3}


Double-row:

Equation 108.
M=k1G1(nνOil)0.62(0.06K)0.3(FrA0.3+FrB0.3) M=k_1\cdot G_1\cdot(n\cdot\nu_{Oil})^{0.62}\cdot\left(\frac{0.06}{K}\right)^{0.3}\cdot\left(F_{rA}^{0.3}+F_{rB}^{0.3}\right)


Symbol

Description

Unit

M

Total friction torque

Nm

k1

Bearing torque constant

-

G1

Geometry factor

-

νOil

Kinematic operating oil viscosity

mm²/s

n

Relative speed between bearing inner and outer ring

1/min

f3

Combined load factor

-

Fr

Radial load

N

K

K factor

-

FrA, FrB

Radial load of row A or B

N

Additional details on the calculation are available in the TIMKEN bearing catalog.

ISO 14179-2

The calculation of bearing losses according to ISO 14179-2 corresponds to the SKF bearing catalog method from 1994.

Equation 109.
M=M0+M1+M2 M=M_0+M_1+M_2


Symbol

Description

Unit

M

Total friction torque

Nm

M0

Load-independent bearing friction torque

Nm

M1

Load-dependent bearing friction torque

Nm

M2

Bearing friction torque for axially loaded cylindrical roller bearings

Nm

Speed-dependent friction torque

Equation 110.
M0=10-10f0(νOiln)23dm3 M_0=10^{-10}\cdot f_0\cdot\left(\nu_{Oil}\cdot n\right)^{\frac{2}{3}}\cdot d_m^3


for

Equation 111.
νOiln2000mm2smin \nu_{Oil}\cdot n\ge2000\frac{mm^2}{s\cdot\min}


or

Equation 112.
M0=1.610-8f0dm3 M_0=1.6\cdot10^{-8}\cdot f_0\cdot d_m^3


for

Equation 113.
νOiln<2000mm2smin \nu_{Oil}\cdot n<2000\frac{mm^2}{s\cdot\min}


Symbol

Description

Unit

M0

Load-independent bearing friction torque

Nm

f0

Load-independent bearing friction factor, depending on the bearing and lubrication types

-

dm

Average bearing diameter 0.5·(d+D)

mm

νOil

Kinematic operating oil viscosity

mm²/s

n

Relative speed between bearing inner and outer ring

1/min

Load-dependent friction torque

Equation 114.
M1=f1P1admb10-3 M_1=f_1\cdot P_1^a\cdot d_m^b\cdot10^{-3}


Symbol

Description

Unit

M1

Load-dependent bearing friction torque

Nm

f1

Load-dependent bearing friction factor

-

P1

Equivalent bearing load for friction torque

N

a, b

Exponents

-

dm

Average bearing diameter 0.5·(d+D)

mm

Equation 115.
M2=f2Fadm10-3 M_2=f_2\cdot F_a\cdot d_m\cdot10^{-3}


Symbol

Description

Unit

M2

Bearing friction torque for axially-loaded cylindrical roller bearings

Nm

f2

Bearing friction factor, depending on the axial load

-

Fa

Axial dynamic bearing load

N

dm

Average bearing diameter 0.5·(d+D)

mm

When this calculation method is selected, factors f0 and f1 must be specified manually. The relevant tables from ISO 14179-2 can be found in the Attribute Help.

Plain bearing losses

Power loss from plain bearings is calculated in the COMBROS R & A modules, which have long been integrated into the FVA-Workbench for iterative solution of the overall system. The friction torques calculated in COMBROS are considered in the determination of losses in the overall system.

Combros R&A

The COMBROS R (radial) and A (axial) calculation modules were developed at the TU Clausthal ITR (Institut für Tribologie und Energiewandlungsmaschinen) as part of FVA Projects FVA 577, FVA 668II, and FVA 677.

Planet carrier losses

Planet carrier power losses with single-plate carriers are a result of the carrier and planets splashing in oil. For dual-plate carriers, the planets do not have any additional influence on the splash losses, as they are located within the planet carrier.

The losses from the rotation of the planets are considered separately and added to those of the planet itself.

The methodology for calculation of planet carrier losses was developed by KETTLER.

Single-plate planet carriers according to KETTLER

For open single-plate planet carriers, the splash losses of the carrier and the planets rotating within it are added together.

Equation 116.
PVST=PVST,sw1+PVST,sr1 P_{VST}=P_{VST,sw1}+P_{VST,sr1}


Symbol

Description

Unit

PVST

Single-plate planet carrier splash power loss

W

PVST,sw1

Single-plate planet carrier side plate splash power loss

W

PVST,sr1

Single-plate planet carrier planet gear splash power loss due to rotation of the carrier

W

Equation 117.
PVST,sw1=4.629510-3dSt13.8bSt1Fe,St11.1945ns01.8559νOil0.22ρOil P_{VST,sw1}=4.6295\cdot10^{-3}\cdot d_{St1}^{3.8}\cdot b_{St1}\cdot F_{e,St1}^{1.1945}\cdot n_{s0}^{1.8559}\cdot\nu_{Oil}^{0.22}\cdot\rho_{Oil}


Symbol

Description

Unit

PVST,sw1

Single-plate planet carrier side plate splash power loss

W

dSt1

Total diameter of the single-plate planet carrier

m

bSt1

Rim width of the single-plate planet carrier

m

Fe,St1

Planet carrier side plate oil level influence factor

-

ns0

Planet carrier speed

min-1

νOil

Kinematic operating oil viscosity

mm2/s

ρOil

Oil density at operating temperature

kg/m3

where

Equation 118.
Fe,St1=1 F_{e,St1}=1


if

Equation 119.
sOil>12dSt1 s_{Oil}>\frac{1}{2}\cdot d_{St1}


or

Equation 120.
Fe,St1=1πarccos(-2sOildSt1) F_{e,St1}=\frac{1}{\pi}\cdot\arccos\left(\frac{-2\cdot s_{Oil}}{d_{St1}}\right)


if

Equation 121.
sOil12dSt1 s_{Oil}\le\frac{1}{2}\cdot d_{St1}


and

Equation 122.
sOil-12dSt1 s_{Oil}\ge-\frac{1}{2}\cdot d_{St1}


or

Equation 123.
Fe,St1=0 F_{e,St1}=0


if

Equation 124.
sOil<-12dSt1 s_{Oil}<-\frac{1}{2}\cdot d_{St1}


Symbol

Description

Unit

Fe,St1

Single-plate planet carrier side plate oil level influence factor

-

sOil

Oil level relative to the center of the gear

m

dSt1

Total diameter of the single-plate planet carrier

m

Equation 125.
PVST,sr1=1.209610-2FakPl1|a|2.6da,PlbPlFe,aSt10.9013ns02.3706ρOil P_{VST,sr1}=1.2096\cdot10^{-2}\cdot Fak_{Pl1}\cdot|a|^{2.6}\cdot d_{a,Pl}\cdot b_{Pl}\cdot F_{e,aSt1}^{0.9013}\cdot n_{s0}^{2.3706}\cdot\rho_{Oil}


Symbol

Description

Unit

PVST,sr1

Single-plate planet carrier planet gear splash power loss due to rotation of the carrier

W

FakPl1

Single-plate planet carrier number of planetary gears influence factor

-

a

Center distance

m

da,Pl

Planetary gear tip diameter

m

bPl

Planetary gear width

m

Fe,aSt1

Single-plate planet carrier planetary gear oil level influence factor

-

ns0

Planet carrier speed

min-1

ρOil

Oil density at operating temperature

kg/m3

where

Equation 126.
FakPl1=1.1724 Fak_{Pl1}=1.1724


if

Equation 127.
zPl=3 z_{Pl}=3


or

Equation 128.
FakPl1=1.1829 Fak_{Pl1}=1.1829


if

Equation 129.
zPl>3 z_{Pl}>3


and

Equation 130.
Fe,aSt1=1 F_{e,aSt1}=1


if

Equation 131.
sOil>a s_{Oil}>a


or

Equation 132.
Fe,aSt1=1πarccos(-sOila) F_{e,aSt1}=\frac{1}{\pi}\cdot\arccos\left(\frac{-s_{Oil}}{a}\right)


if

Equation 133.
sOil>-a s_{Oil}>-a


or

Equation 134.
Fe,aSt1=0 F_{e,aSt1}=0


if

Equation 135.
sOil<-a s_{Oil}<-a


Symbol

Description

Unit

FakPl1

Single-plate planet carrier number of planetary gears influence factor

-

zPl

Number of planets

-

Fe,aSt1

Single-plate planet carrier planetary gear oil level influence factor

-

sOil

Oil level relative to the center of the gear

m

a

Center distance in the coordinate system

m

einwangigerSteg.PNG

Figure: Single-plate planet carrier geometric data

Dual-plate planet carriers according to KETTLER

For open dual-plate planet carriers, the splash losses are caused exclusively by the carrier splashing in oil.

Equation 136.
PVST,sw2=4.629510-3dSt23.8bSt2Fe,St21.1945ns01.8559νOil0.22ρOil P_{VST,sw2}=4.6295\cdot10^{-3}\cdot d_{St2}^{3.8}\cdot b_{St2}\cdot F_{e,St2}^{1.1945}\cdot n_{s0}^{1.8559}\cdot\nu_{Oil}^{0.22}\cdot\rho_{Oil}


Symbol

Description

Unit

PVST,sw2

Dual-plate planet carrier side plate splash power loss

W

dSt2

Total diameter of the dual-plate planet carrier

m

bSt2

Dual-plate planet carrier rim width

m

Fe,St2

Dual-plate planet carrier planetary gear oil level influence factor

-

ns0

Planet carrier speed

min-1

νOil

Kinematic operating oil viscosity

mm²/s

ρOil

Oil density at operating temperature

kg/m³

where

Equation 137.
Fe,St2=1 F_{e,St2}=1


if

Equation 138.
sOil>12dSt2 s_{Oil}>\frac{1}{2}\cdot d_{St2}


or

Equation 139.
Fe,St2=1πarccos(-2sOildSt2) F_{e,St2}=\frac{1}{\pi}\cdot\arccos\left(\frac{-2\cdot s_{Oil}}{d_{St2}}\right)


if

Equation 140.
sOil12dSt2 s_{Oil}\le\frac{1}{2}\cdot d_{St2}


and

Equation 141.
sOil-12dSt2 s_{Oil}\ge-\frac{1}{2}\cdot d_{St2}


or

Equation 142.
Fe,St2=0 F_{e,St2}=0


if

Equation 143.
sOil<-12dSt2 s_{Oil}<-\frac{1}{2}\cdot d_{St2}


Symbol

Description

Unit

Fe,St2

Dual-plate planet carrier planetary gear oil level influence factor

-

sOil

Oil level relative to the center of the gear

m

dSt2

Total diameter of the dual-plate planet carrier

m

zweiwangigerSteg.PNG

Figure: Dual-plate planet carrier geometric data

Sealing losses

Power loss from radial shaft seals are a result of friction between the seal, which is generally fixed, and the rotating shaft. These friction losses depend on various factors, such as the seal material, hardness of the shaft material, surface roughness of the shaft in the area of the seal lip, the lubricant, and the temperature at the location of the seal. The calculation is performed using simplified empirically determined formulas and factors.

ISO 14179-1 (USA)

ISO/TR 14179-1 is the American ISO approach for gearbox thermal balance calculations. It includes calculation of the sealing losses based on the rules and regulations of the Association for Rubber Products Manufacturers (ARPM OS-15).

Equation 144.
PVD=TSn9549 P_{VD}=\frac{T_S\cdot n}{9549}


where

Equation 145.
TS=3.737dsh T_S=3.737\cdot d_{sh}


for VITON

Equation 146.
TS=2.429dsh T_S=2.429\cdot d_{sh}


for BUNA N

Symbol

Description

Unit

PVD

Power loss at the seal

W

dsh

Shaft diameter at the seal

mm

n

Speed of the shaft relative to the seal

1/min

ISO 14179-2 (Germany)

ISO/TR 14179-2 is the German ISO approach for gearbox thermal balance calculations. It includes calculation of the sealing losses based on the Simrit/Freudenberg (SIMRIT) catalog for radial shaft seals.

Equation 147.
PVD=7.6910-6dsh2n P_{VD}=7.69\cdot10^{-6}\cdot d_{sh}^2\cdot n


Symbol

Description

Unit

PVD

Power loss at the seal

W

dsh

Shaft diameter at the seal

mm

n

Speed of the shaft relative to the seal

1/min

LINKE

Heinz Linke describes an extension of the ISO 14179-2 approach for calculating sealing losses in his book on cylindrical gears (LINKE). This approach extends the calculation to include the influence of the lubricant at different operating temperatures.

Equation 148.
PVD=[145-1.6ϑOil+350lglg(ν40+0.8)]dsh2n10-7P_{VD}=[145-1.6\cdot\vartheta_{Oil}+350\lg\lg(\nu_{40}+0.8)]\cdot d_{sh}^2\cdot n\cdot10^{-7}


Symbol

Description

Unit

PVD

Power loss at the seal

W

ϑOil

Oil operating temperature

°C

ν40

Kinematic viscosity of the lubricant at 40°C

mm2/s

dsh

Shaft diameter at the seal

mm

n

Speed of the shaft relative to the seal

1/min

Sources

Standards

  • ISO/TR 14179-1:2001(E): Gears - Part 1: Rating gear drives with thermal equilibrium at 95° C sump temperature, 2001

  • ISO/TR 14179-2:2001(E): Gears - Part 2: Thermal load-carrying capacity, 2001

  • DIN 3996:2019-09: Calculation of load capacity of cylindrical worm gear pairs with rectangular crossing axes, 2019

  • DIN 31652-1:2017-01: Plain bearings - Hydrodynamic plain journal bearings under steady-state conditions - Part 1: Calculation of circular cylindrical bearings, 2017

  • DIN 31653-1:1991-05: Plain bearings; hydrodynamic plain thrust bearings under steady-state conditions; calculation of pad thrust bearings, 1991

  • DIN 31654-1:1991-05: Plain bearings; hydrodynamic plain thrust bearings under steady-state conditions; calculation of tilting-pad thrust bearings, 1991

  • DIN 31657-1:1996-03: Plain bearings - Hydrodynamic plain journal bearings under steadystate conditions - Part 1: Calculation of multi-lobed and tilting pad journal bearings, 1996

Books, Catalogs, Instruction Manuals

  • SIMRIT: Radialwellendichtringe, Katalog Nr. 100, 1976

  • ESCHMANN, P. u. a.: Die Wälzlagerpraxis. Oldenburg München-Wien, 1978

  • NIEMANN, G., WINTER, H.: Machine Elements, Vol. 3, Berlin: Springer, 1983

  • FREUDENBERG: Simmering/Radial-Wellendichtringe, Katalog Nr. 100 Ausgabe 1/86

  • ARPM OS-15: Measuring Radial Lip Seal Torque and Power Consumption, Association for Rubber Products Manufacturers, 1986

  • LINKE, H.: Stirnradverzahnung, 2. Auflage, Carl Hanser Verlag München Wien, 2010

  • SKF: Rolling bearings, catalogue, PUB BU/P1 17000/1 EN, 2018

  • SCHAEFFLER: Rolling bearings, catalogue, HR 1, 2018

  • TIMKEN: Engineering manual bearings, catalogue, 2011

  • WTplus: FVA-EDV Programm WTplus, Version 2.2.1, Benutzeranleitung, 2016

Dissertations and Publications

  • OHLENDORF, H.: Verlustleistung und Erwärmung von Stirnrädern, TH München, Diss., 1958

  • ARIURA, Y.: Lubricant churning loss in spur gear systems, JSME Vol. 16, pp. 881 -891, Veröffentlichung, 1973

  • WALTER, P.: Anwendungsgrenzen für die Tauchschmierung von Zahnradgetrieben, Plansch- und Quetschverluste bei Tauchschmierung, Universität Stuttgart, Diss., 1982

  • MAUZ, W.: Hydraulische Verluste bei Tauch- und Einspritzschmierung von Zahnradgetrieben, Universität Stuttgart, Diss., 1985

  • WECH, L.: Untersuchungen zum Wirkungsgrad von Kegelrad- und Hypoidgetrieben, TU München, Diss., 1987

  • BUTSCH, M.: Hydraulische Verluste schnelllaufender Stirnradgetriebe, Universität Stuttgart, Diss., 1989

  • SCHLENK, L.: Untersuchungen zur Fresstragfähigkeit von Großzahnrädern,TU München, Diss., 1995

  • BARTON, P. M.: Tragfähigkeit von Schraubrad- und Schneckengetrieben der Werkstoffpaarung Stahl/Kunststoff, Ruhr-Universität Bochum, Diss., 2000

  • DOLESCHEL, A.: Wirkungsgradberechnung von Zahnradgetrieben in Abhängigkeit vom Schmierstoff, TU München, Diss., 2002

  • WASSERMANN, J.: Einflussgrößen auf die Tragfähigkeit von Schraubradgetrieben der Werkstoffpaarung Stahl/Kunststoff, Ruhr-Universität Bochum, Diss., 2005

  • WIMMER, A.: Lastverluste von Stirnradverzahnungen - Konstruktive Einflüsse, Wirkungsgrad-maximierung, Tribologie, TU München, Diss., 2006

  • WENDT, T.: Tragfähigkeit von Schraubradgetrieben mit Schraubrädern aus Sintermetall, Ruhr-Universität Bochum, Diss., 2008

  • PECH, M.: Tragfähigkeit und Zahnverformung von Schraubradgetrieben der Werkstoffpaarungen Stahl/Kunststoff, Ruhr-Universität Bochum, Diss., 2011

  • MILTENOVIC, A.: Verschleißtragfähigkeitsberechnung von Schraubradgetrieben mit Schaubrädern aus Sintermetall, Ruhr-Universität Bochum, Diss., 2011

  • SUCKER, J.: Entwicklung eines Tragfähigkeitsberechnungsverfahrens für Schraubradgetriebe mit einer Schnecke aus Stahl und einem Rad aus Kunststoff, Ruhr-Universität Bochum, Diss., 2012

Forschungsvereinigung Antriebstechnik e.V. (FVA), Frankfurt/Main

  • MAUZ, W.: FVA-Heft 185: Zahnradschmierung-Leerlaufverluste, FVA Nr. 44 III, Abschlussbericht, 1985

  • MAURER, J.: FVA-Heft 432: Ventilationsverluste, FVA Nr. 44 VI, Abschlussbericht, 1994

  • SCHLENK, L.: FVA-Heft 443: Größeneinfluss Fressen, FVA-Nr. 166 I, Abschlussbericht, 1995

  • KETTLER, J.: FVA-Heft 639: Planetengetriebe-Sumpftemperatur, FVA-Nr. 313 I, Abschlussbericht, 2000

  • DOLESCHEL, A.: FVA-Heft 664: Wirkungsgradtest, FVA-Nr. 345 I, Abschlussbericht, 2001

  • GEIGER J.: FVA-Heft 959: Validierung WTplus, FVA-Nr. 69 V, Abschlussbericht, 2010

  • HAGEMANN, T.: FVA-Heft 996: Verbesserte Radialgleitlagerberechnung, FVA-Nr. 577 I, Abschlussbericht, 2011

  • PFEIFFER P.: FVA-Heft 1184: Radialkippsegmentlager Ölzuführungseinfluss, FVA-Nr. 677 I, Abschlussbericht, 2016

  • SEDLMAIR M.: FVA-Heft 1208: Erweiterung WTplus, FVA-Nr. 69 VI, Abschlussbericht, 2017

  • OEHLER, M.: FVA-Heft 1226: Schneckengetriebewirkungsgrade, FVA-Nr. 729 I, Abschlussbericht, 2017

  • JURKSCHAT, T.: FVA-Heft 1223: Verlustleistung von Stirnradverzahnungen, FVA-Nr. 686 I, Abschlussbericht, 2017

  • FINGERLE A.: FVA-Heft 1282: Durchgängige Berechnung gleitgelagerter Welle-Lager-Systeme, FVA-Nr. 668 II, Abschlussbericht, 2018

  • SEDLMAIR M.: FVA-Heft NA: Innenverzahnungen - Reibung und Wärme, FVA-Nr. 584 II, ongoing project, 2022